Nie obrażaj więc mojej inteligencji poprzez czynione na pokaz zaniżanie własnej.
Utwardzanie wydzieleniowe jest możliwe tylko dla stopów: * w których dodatek stopowy częściowo rozpuszcza się w osnowie * w wysokich temperaturach tworzy z osnową roztwór stały graniczny * przy obniżaniu temperatury wykazuje małą rozpuszczalność graniczną. Utwardzanie wydzieleniowe jest najefektywniejsze gdy zmniejszenie rozpuszczalności dodatku stopowego zachodzi w wysokiej temperaturze tuż poniżej maksimum rozpuszczalności i prowadzi do wydzielenia fazy wtórnej. Stale o strukturze austenitycznej, a także inne stopy – głównie metali nieżelaznych – nie wykazujące przemian alotropowych, lecz charakteryzujące się zmienną rozpuszczalnością jednego ze składników w roztworze stałym , mogą być poddawane utwardzaniu wydzieleniowemu Proces utwardzania składa się z dwu etapów: przesycania oraz starzenia: Przesycanie polega na nagrzaniu metalu do stanu płynnego, rozpuszczeniu składników fazy (lub faz) umacniającej i wygrzaniu stopu w tej temperaturze w celu uzyskania jednorodnego roztworu. Przy szybkim schłodzeniu otrzymuje się roztwór stały w stanie metastabilnym (przesyconym). Otrzymana struktura jest na ogół nietrwała, gdyż składnik stopowy znajdujący się w roztworze w nadmiernej ilości wykazuje tendencję do wydzielenia się. Przesycanie w niewielkim stopniu podwyższa właściwości mechaniczne stopów i w zasadzie poprzedza starzenie. Starzenie kolejny etap obróbki cieplnej stopów metali uprzednio przesyconych; polega na wygrzaniu ich w temperaturze odpowiednio niższej od temperatury przesycenia w celu wydzielenia z roztworu stałego przesyconego fazy (lub faz) o odpowiednim stopniu dyspersji, zawierającej składnik stopowy, znajdujący się w roztworze w nadmiarze. Skutkuje nawet prawie dwukrotnym zwiększeniem własności wytrzymałościowych, przy mniejszej ale wciąż stosunkowo niezłej ciagliwości. Dobre starzenie wymaga czasu i zachowania odpowiedniej temperatury procesu. Starzenie w temperaturze podwyższonej nazywa się przyspieszonym albo sztucznym, w temperaturze otoczenia - naturalnym albo samorzutnym. Oziebianie (przesycanie) polega na nagrzaniu stopu do temperatury wyższej o ok. 30÷50°C od granicznej rozpuszczalności w celu rozpuszczenia wydzielanego składnika w roztworze stałym, wygrzaniu w tej temperaturze i następnieszybkim chłodzeniu. W wyniku przesycania stop uzyskuje strukturę jednofazową. W przypadku stali austenitycznych strukturę stanowi austenit przesycony węglem. Własności wytrzymałościowe stali po przesycaniu ulegają wprawdzie niewielkiemu zmniejszeniu, lecz zwiększają się własności plastyczne. -Stopy aluminium grupy 7XXX: Są to stopy obrabiane cieplnie o wytrzymałości najlepszej wśród stopów aluminium. Charakteryzują się doskonałą odpornością na obciążenia dynamiczne i dość dobrą odpornością na korozję atmosferyczną. Podstawowe zastosowania to: • elementy konstrukcyjne stosowane w warunkach ekstremalnych obciążeń mechanicznych z kontrolowanym poziomem zanieczyszczeń (np. przemysł lotniczy) – 7150, 7475 • zderzaki lekkiej konstrukcji pozwalające obniżyć zużycie paliwa – 7029, 7129 -Stopy aluminium grupy 6XXX: Są to materiały obrabiane cieplnie o średniej wytrzymałości. Nadają się doskonale do spawania, jaki i wytłaczania, dzięki dobrej plastyczności w podwyższonych temperaturach. Charakteryzują się doskonałą odpornością korozyjną, szczególnie w środowisku morskim. Podstawowe zastosowania to: • elementy konstrukcyjne, np. konstrukcje dachowe hal sportowych lub konstrukcje mostowe – 6063 • konstrukcje spawane – 6061 • karoserie samochodowe – 6111 -Stopy aluminium grupy 5XXX: Są to stopy o doskonałych właściwościach eksploatacyjnych oraz odporności na korozję. Posiadają doskonałą odporność na obciążenia dynamiczne (nawet w obniżonych temperaturach) oraz są dobrze spawalne. Wiele z tych właściwości zależy od zawartości magnezu w stopie. Na przykład ze wzrostem zawartości procentowej Mg w zakresie 0,5÷5% polepszają się znacznie właściwości mechaniczne, natomiast spada odporność na korozję. Odporność ta (szczególnie w warunkach środowiska morskiego) zawdzięczana jest obecności na powierzchni stopu ochronnej warstwy pasywnej. Niestety magnez w stopie powyżej 3% może wytrącać się na granicach ziarn, co prowadzi do utworzenia względnie grubej i kruchej warstwy pasywnej. Jest to tzw. redukcja odporności korozyjnej, w szczególności na korozyjne pękanie naprężeniowe (SCC), wywołane uczuleniem w temperaturach powyżej 100°C. Podstawowe zastosowania to: • powszechnie stosowane jako materiały konstrukcyjne (głównie na nadbudówki i kadłuby statków) – 5052, 5083, 5086 • karoserie samochodowe – 5754 • w inżynierii samochodowej – 5252, 5457, 5657 |
Menu
|